

225 Spartangreen Boulevard Duncan, SC 29334 USA *T* +1 (864) 486-4300 *F* +1 (864) 580-4060 bwdesigngroup.com

October 27, 2021

Myra Reece
Director of Environmental Affairs
South Carolina Department of Health and Environmental Control
2600 Bull Street
Columbia, South Carolina 29201
reecemc@dhec.sc.gov

Subject: Request for Approval – Steam Stripper Optimization Trial, New-Indy Catawba LLC, York County

Dear Ms. Reece:

On behalf of New-Indy Catawba LLC (New-Indy), Design Group is requesting approval for the New-Indy Mill (the Mill) to maintain and evaluate different operating scenarios to optimize the throughput capacity of the steam stripper. This letter describes the planned stripper maintenance and the proposed steam stripper optimization trials. The ultimate goal of the stripper optimization trials is to identify stripper operating conditions that will reduce the impact of total reduced sulfur (TRS) odors on the community.

STEAM STRIPPER MAINTENANCE

Prior to the steam stripper optimization trials, the Mill is planning to utilize a regularly scheduled mill maintenance outage to conduct modified routine maintenance of the steam stripper and associated heat exchangers to remove scaling and fouling which over time has reduced stripping capacity. This maintenance will take place over a two-day period, currently scheduled for November 3-4, 2021. During this time, the paper machine will be shut down and the pulp mill will be operating at a greatly reduced rate. As such, no pulping process condensates (foul condensate) are expected to be produced, so the steam stripper will not be running during this time, and we expect no foul condensate to be sent to the ASB.

A more thorough maintenance outage of the stripper system is tentatively scheduled for the either the week of November 8 or November 15, 2021. During this outage, the stripping system is expected to be down for a total of 5 days to thoroughly clean and address other maintenance and scaling in equipment unable to be addressed during the previous outage in late September. During this outage, the mill will be sending foul condensate to the ASB, but will be addressing the potential odor considerations with mitigation plan outlined below.

An overview of the Mill foul condensate treatment system is provided in Attachment 1.

Odor Considerations during Steam Stripper Maintenance

As mentioned previously, the Mill does not expect to produce any foul condensate during the stripper outage November 3-4. If, however, any foul condensate is generated, the Mill plans to take preventative

steps to minimize odor emissions from foul condensate treatment at the ASB during the steam stripper maintenance shutdown. During the extended outage either the week of November 8 or the week of November 15, foul condensate will be produced and sent directly to the ASB. As such, the preventative measures to minimize odor emissions will be taken as well. The following is an outline of these measure:

- During the shutdown, the Mill will add supplemental oxygen to the ASB inlet ditch at the rate of 3,600 lbs/day.
- During the shutdown, the Mill will add 1 gpm of hydrogen peroxide to the ASB inlet ditch.
- All 52 available aerators at the ASB will be operating during the shutdown.
- If foul condensate is generated during the outage, hydrogen peroxide will be injected into the foul condensate hardpipe to pretreat sulfides prior to entry to the ASB. Hydrogen peroxide dosing calculations are provided in Attachment 2.
- A memorandum summarizing the H2SSIMS modelling results of hydrogen peroxide injection to the foul condensate in the hardpipe on TRS emissions was previously submitted to DHEC on September 16, 2021.

HAP Destruction Compliance during Steam Stripper Maintenance

In the event of foul condensate generation during the outage, HAP destruction levels at the ASB during the steam stripper shutdown are expected to remain in compliance as 15 additional aerators have come online since July 11, 2021. Currently, all 52 aerators at the ASB are operating. The addition of supplemental oxygen to the ASB inlet ditch, hydrogen peroxide at the ASB inlet ditch, and hydrogen peroxide injection into the foul condensate hardpipe for odor mitigation are expected to also aid in the treatment of HAPs.

Commitment

In the event of foul condensate generation during the outage, New-Indy does not believe that that there will be any issues with the handling of the foul condensate at the ASB based on H2SSIMS modeling and experience during the prior stripper outage in September. The Mill will be vigilant in monitoring the process and is committed to taking any and all steps necessary to minimize emissions and maintain compliance with applicable law during the stripper maintenance.

To that end, after the stripper maintenance is completed, New-Indy would like to conduct optimization trials to better determine the optimal configuration for the stripper to handle the foul condensate.

STEAM STRIPPER OPTIMIZATION TRIAL

Currently the Mill maximizes foul condensate flow to the steam stripper, with the remaining foul condensate flow going to the ASB (Attachment 1). The purpose of this proposed steam stripper optimization trial is to evaluate the capacity of the stripper to process 850 gpm of foul condensate. If successful, the trial will demonstrate that the steam stripper can treat a higher flow of foul condensate, which would allow a lower volume of foul condensate (and sulfide compounds) to be sent to the ASB for treatment.

Proposed Stripper Optimization Trial Configurations

Attachment 3 contains the technical details for the proposed steam stripper optimization trials.

Schedule

The Mill would like to take advantage of papermachine downtime the week of November 3-4, 2021 to perform routine maintenance and cleaning the steam stripper system while no foul condensate is being produced. The Mill would like to also take an additional 5 days either the week of November 8 or November 15 to perform additional maintenance on equipment that cannot be addressed during the two-day outage November 3-4 to ensure the system is completely cleaned. Following the maintenance and cleaning, the Mill would like to begin the steam stripper optimization trials, tentatively scheduled for the week of November 22 or November 29. The first series of steam stripper optimization trials will take place over the course of 5 days (trials 1-4). The Mill will provide notice to the Agency and public at least 48 hours prior to the start of trial activities.

Subpart S Compliance during the Stripper Optimization Trial

Currently, stripped condensate is sent for reuse to the brownstock washers, as allowed per 40 CFR § 63.446(e)(1). However, the volume of stripped condensate generated during the trial may exceed the volume that the brownstock washers can accept. Due to the high heat content of the stripped condensate, this stream cannot be sent to the ASB in the existing hardpipe without first passing through a heat exchanger. Any periods of conveyance in a non-closed system per 40 CFR § 63.446(d)(1)(2) will be reported in the Semi-Annual MACT report for July-December 2021.

Post-Trial

The Mill will submit a brief written summary to the Agency outlining the findings of the steam stripper optimization trial within 30 days of concluding the trials. Should the trials be deemed a success, the Mill will submit engineered drawings, process flow diagrams, and specifications for the optimized stripper configuration for Agency review and approval. The lead time to acquire a new heat exchanger for permanent installation is roughly 6 months.

If you have any questions, please contact me at 360.316.9677 or cody.hargrove@bwdesigngroup.com, or Mr. Dan Mallett with New-Indy at 803.981.8010 or dan.mallett@new-indycb.com.

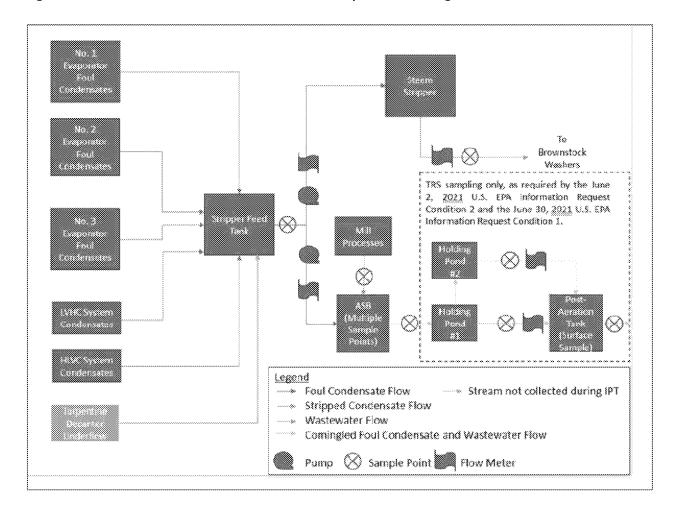
Sincerely,

Digitally signed by Cody Hargrove DN: 5-U2.

Cody Hargrove Second Phargrove DN: 5-U2.

Cody Hargrove Second Phargrove DN: 5-U2.

Data: 2021.10.27 18:41:35-0700'


Cody Hargrove Project Manager

ATTACHMENT 1

Figure 1. Foul Condensate Collection and Treatment System Flow Diagram

ATTACHMENT 2

Hydrogen Peroxide Injection to Foul Condensate Hardpipe Sulfide Oxidation Calculations

	Total Foul Condensate Flow (MGD) ¹	Foul Condensate to Stripper (MGD) ¹	Foul Condensate to ASB (MGD) ¹	Foul Condensate Sulfide Concentration (ppm) ²	Sulfide Amount in Total Foul Condensate flow (lbs/day)	Pounds of H2O2 at 50% needed to oxidize 1 lb of sulfide (as S ²⁻) ^{3,4}	Minimum Ibs/day of 50% H2O2 needed to treat 1008 Ibs/day of sulfide	H2O2 Treatment Capacity for Sulfides when dosing 1 gpm	Units
7/9/21	1.04	0.71	0.33	114	1008	8.5	8,566	1	gpm
7/10/21	1.06	0.71	0.35	97	858			1440	gpd
7/11/21	1.04	0.71	0.33	47	408			9.98	specific gravity 50% H2O2 in lbs
Average	1.05	0.71	0.34	86	751			14,372	lbs/day
% split	100%	68%	32%						

A hydrogen peroxide (50%) injection rate of 0.6 gpm (8,566 lbs/day) is adequate to oxidize the maximum anticipated sulfide load (1008 lbs/day) in the total foul condensate stream. The Mill plans to inject 1 gpm (14,372 lbs/day) of 50% hydrogen peroxide into the hardpipe for the oxidation of sulfides during the stripper shutdown.

Hydrogen Peroxide Dosing Assumptions:

Complete reaction of peroxide.

Peroxide reacts only with sulfides (no interference from other reactants).

Thorough and complete mixing takes place within the hardpipe line.

References

[1] Foul Condensate Flows for July 9-11, 2021. IPT July 2021, Tables G-1, G-2, G-4.

[2] Foul Condensate sulfide concentrations, July 9-11, 2021. CAP Condition 5 Air Dispersion Modeling Report, August 2021.

[3] 4 parts H2O2 to oxidize 1 part sulfide ion at pH > 8.5. From WEF MOP 25, p.120-121 (2020).

[4] Reaction Equation: S(2-) + 2O2 --> SO4

2H2O2 --> 2H2O + O2 4:1 H2O2:S (molar) =4*34/32

4.25 lbs of 100% H2O2 needed to treat 1 lb of sulfide

ATTACHMENT 3

Steam Stripper Optimization Trial Configurations Trials 1-4 are 6 hours in duration each

Trial 1: Design (2 Preheaters, 800gpm foul condensate processed with 77kpph of Steam)

- Effective Steam ratio: 16%
- Steam: 77kpph 160# Steam
- Foul Condensate Feed Flow: 800gpm
- <u>Primary Goal:</u> Demonstrate maximum efficiency removal of MeOH and TRS at 800gpm foul condensate feed rate.
- Secondary Goal:
 - To demonstrate how best to operate the system to maximize removal of HAPs and TRS at different foul condensate feed rates.
 - To gather data as needed for GAP analysis between design and current performance. Though we will have cleaned and repaired the system, it is possible or even likely that there are unknown smaller issues that need to be addressed to get us to design performance. We will be measuring temperatures with IR gun at certain points that will allow us to use the mass and energy balance model of the stripper to identify those GAPs.

Trial 2: Hybrid Operation (2 Preheaters, 850gpm foul condensate processed with 77kpph of Steam)

- Effective Steam Ratio: TBD by trial (Target between 6% and 16%)
- Steam: 77kpph 160# Steam
- Foul Condensate Feed Flow: 850gpm
- <u>Primary Goal:</u> To establish steady state operation at 850gpm FC feed rate and at the maximum steam ratio that the stripper can operate at, and test for TRS and MeOH removal efficiencies at those conditions.
- Secondary Goals:
 - To demonstrate how best to operate the system to maximize removal of HAPs and TRS at different foul condensate feed rates.
 - O To gather data as needed for GAP analysis between design and current performance. Though we will have cleaned and repaired the system, it is possible or even likely that there are unknown smaller issues that need to be addressed to get us to design performance. We will be measuring temperatures with IR gun at certain points that will allow us to use the mass and energy balance model of the stripper to identify those GAPs.

Trial 3: Hybrid Operation (3 Preheaters, 850gpm foul condensate processed with 77kpph of Steam)

- Effective Steam Ratio: TBD by trial (Target between 6 and 16%)

- Steam: 77kpph 160# Steam
- Foul Condensate Feed Flow: 850gpm
- <u>Primary Goal:</u> Demonstrate higher steam ratio (and higher MeOH removal efficiencies) resulting from operating with 3rd preheater at foul condensate feed rate of 850gpm.
- Secondary Goals:
 - To demonstrate how best to operate the system to maximize removal of HAPs and TRS at different foul condensate feed rates.
 - To gather data as needed for GAP analysis between design and current performance. Though we will have cleaned and repaired the system, it is possible or even likely that there are unknown smaller issues that need to be addressed to get us to design performance. We will be measuring temperatures with IR gun at certain points that will allow us to use the mass and energy balance model of the stripper to identify those GAPs.

Trial 4: Design / 3 Preheaters (3 Preheaters, 800gpm foul condensate processed with 77kpph of Steam)

- Effective Steam Ratio: TBD by trial (Target >16%)
- Steam: 77kpph 160#
- Condensate Flow: 800gpm
- <u>Primary Goal:</u> Demonstrate higher steam ratio (and higher MeOH removal efficiencies) resulting from operating with 3rd preheater at foul condensate feed rate of 800gpm.
- Secondary Goals:
 - To demonstrate how best to operate the system to maximize removal of HAPs and TRS at different foul condensate feed rates.
 - To gather data as needed for GAP analysis between design and current performance. Though we will have cleaned and repaired the system, it is possible or even likely that there are unknown smaller issues that need to be addressed to get us to design performance. We will be measuring temperatures with IR gun at certain points that will allow us to use the mass and energy balance model of the stripper to identify those GAPs.

